
Rand-Emonium Software 

Presents 

Rand Hack Pack Vol. 1 

Included in this bundle are the following software 
packages: 

 - CurtaSim which is a simulation of the Curta 
mechanical calculator from HackFest 2012. 

 - abCalcNDA which is a GS/OS RPN calculator new 
desk accessory from HackFest 2013. 

 - apple2048 which is a number sliding and 
matching game from HackFest 2014. 

 - a2sudoku which is a number puzzle game from 
HackFest 2015. 

 - a2bejeweled which is a gem matching game from 
HackFest 2016. 

 - colourGo which is a running, jumping and colour 
matching game from HackFest 2017. 



CurtaSim 

This is a simulation of the Curta mechanical 
calculator written for the Apple //.  It should work 
on any Apple // that supports ProDOS 2.4.2. 

A Curta looks somewhat like a pepper grinder.  To 
replace the crank, this simulation uses a joystick. 

The primary interaction is performed by "cranking" 
the joystick through 360 degrees.  To perform a crank, 
start with the joystick centred.  Pull the joystick 
towards you and then crank around a circle clockwise 
until it is again pulled towards you.  Then release 
the joystick back to the centre position. 

The operand is the set of digits at the top of the 
screen.  The sliders control the operand.  The result 
is at the bottom of the screen.  The counter is a 
multiplicand.  Below the result is a carat that points 
to a digit.  This is the same as the carriage position 
on a real Curta. 

The joystick operations are: 
   * Left/Right - Select a digit in the operand. 
   * Up/Down - Change the selected digit in the 
operand. 
   * Left/Right with Button 0 Down - Change the 
carriage position. 
   * Crank - Add the operand times the carriage 
position to the result.  If the carriage position is 



pointing to the hundreds position, then 100 times the 
operand is added to the result. 
   * Crank with Button 0 Down - Subtract the operand 
times the carriage position from the result. 
   * Crank with Button 1 Down - Clear the result and 
counter values. 

These keyboard commands can be used: 
   * Q - Quit the simulation. 
   * H - Print help information. 

Imagine you want to multiply 123 by 990.  Perform a 
clear operation if result is not zero.  Use Left/Right/
Up/Down operations to put 123 in the operand.  Hold 
button 0 down and perform Left/Right moves to get the 
carriage pointing to the thousands position in the 
result. 

Now do an Add operation.  The calculator multiplies 
the operand by 1000 from the carriage position which 
results in 123,000 which is then added to the result.  
The result was zero so now the result is 123,000.  Note 
the counter is 1000.  The operand (123) multiplied by 
the counter (1000) is the result (123,000). 

Move the carriage to the tens position.  Do a Subtract 
operation.  The calculator multiplies the operand by 10 
from the carriage position which results in 1230 which 
is then subtracted from the result.  The result was 
123,000 so now the result is 121,770.  Note that the 
counter is now 990.  Again, the operand (123) 
multiplied by the counter (990) is the result (121,770). 



abCalcNDA 

1. Installation: 

To install abCalc, drag the file abCalcNDA to the 
Desk.Accs folder in your System folder on your boot 
drive.  After rebooting, you should find "abCalc" in 
the Apple menu in any GUI application on your 
Apple //GS. 

Alternatively, if you have the IR Finder extra 
installed, you can just double click abCalcNDA from the 
Finder whenever you want to launch it.  If you reboot, 
you will have to double click it again to add it 
because it won't be loaded automatically on boot up. 

2. UI Overview: 

The abCalc UI is split into the following major 
components: 

1. The list at the top is the "stack" where the numbers 
you are working with will be displayed.  The stack 
always displays at least four items, even if there are 
not four things on the stack.  Each item on the stack 
is prefixed with a number which is its depth on the 
stack where "1:" is the label for the item at the top 
of the stack and "2:" is the number just below the top 
of the stack, etc.  The number at the top of the stack 
is displayed at the bottom of the list (did I mention 
that the NDA is called the "Ass-Backwards Calculator").  
Any non-empty row on the stack can be selected and 



you can do a copy operation on the row.  The number 
on that row will be copied to the clipboard. 

2. On the left side, directly below the stack is the 
entry box.  This is where you can type in new numbers 
which go on the stack.  You can actually do 
everything with abCalc with the keyboard.  You can 
type in numbers or operations which manipulate the 
numbers on your stack.  If you are typing in 
operations, you can type them in upper-case, lower-case 
or any mixture.  abCalc does a case insensitive match 
for the operation.  You can select text in the entry 
box and do the usual cut, copy and paste operations 
your selection. 

3. On the right side, directly below the stack is a 
long list of the operations available in abCalc.  The 
operations are sorted into an order which groups them 
into the following types: arithmetic, stack, 
trigonometry, exponentials and logical.  You can scroll 
through the operations but be careful.  Just clicking 
on an operation in the list will result in that 
operation being executed.  So, items in the list operate 
both as a cheat sheet of the operations available and 
as a way to execute those operations. 

4. Below the entry box is a series of buttons which 
make abCalc look just a bit like a classic calculator.  
You can use these buttons by clicking on them using 
your mouse or you can just type into the entry box 
directly.  Whichever way you want to work.  Note that 
the "+", "-", "x", "/" and "^"  buttons do the same 



thing as their counterparts listed in the operation 
list.  So you can add numbers in three ways: you can 
click the "+" button, you can click the "+" item in the 
operation list or you can type + followed by enter on 
your keyboard.  The numbers 0 to 9 and letters A to F 
are there to allow you to enter numbers in both 
decimal and hexadecimal (hex numbers consist of 
numbers 0-9 and letters A-F).  When you click them, 
the number or letter is inserted into the entry box.  
Similarly the period and # buttons insert those 
characters into the entry box.  See number formats 
for the meaning the the # character.   

5. A Bit About RPN: 

Let's talk about some more backward-ness.  RPN stands 
for "Reverse Polish Notation" and it is a different 
way to write arithmetic expressions.  People are used 
to things like "1 + 2" but in RPN, that would be "1 2 
+".  The way to think about this is "Put the number 1 
on the stack, then put the number 2 on the stack, then 
execute the + operation which takes the last two 
numbers from the stack, adds them and puts the result 
back on the stack". 

So, if you wanted to calculate "1+2" on abCalc, you 
would type or click the following: "1 <enter> 2 
<enter> +".  NOTE, you can actually avoid pressing 
the second <enter> if you click the + button or the 
+ operation from the operation list.  When you click a 
button which executes an operation or select an 
operation from the operation list, anything in the 



entry box is first pushed onto the stack.  Then, it 
executes the operation you selected.  This is just a 
small shortcut you can use.  In my examples in this 
section, I will always include the unnecessary 
<enter>. 

You can do more complex calculations by combining 
operations together.  Imagine you wanted to calculate 
"(1+2)*3".  In abCalc, you would type or click the 
following: "1 <enter> 2 <enter> + 3 *".  But, what 
if you wanted "1+(2*3)".  That is easy also: "1 <enter> 
2 <enter> 3 <enter> * +". 

In general, abCalc has two fundamental types of 
operations: unary operations and binary operations.  
Addition and multiplication is a binary operation 
because it takes two items from the stack (two - thus 
binary) and pushes a single result back onto the 
stack.  A unary operation takes a single number from 
the stack and pushes a single result back onto the 
stack.  An example of a unary operation is SIN which 
calculates the sine of a number in radians.  So, to 
calculate "sine(4)", you would type or click the 
following: "4 <enter> <SIN>".  To calculate 
"3*(sin(4-2))", you would type or click the following: 
"3 <enter> 4 <enter> 2 <enter> <-> <SIN> <*>".  
Remember, you can click SIN from the operation list or 
you can type "sin<enter>" into the entry box to 
execute the sine operation.  Operations use case 
insensitive matching so you can enter "Sin", "sin", 
"SIN" or even "SiN".  Whatever you like. 



There are operations which are neither unary nor 
binary (like DROP, CLEAR and RCWS) and those are 
documented later. 

RPN may seem unnatural and "ass-backwards" but with 
practice, it can start to become second nature to the 
point where you may dread using a standard 
calculator. 

6. Number Formats: 

abCalc operates on two types of numbers: real numbers 
and integer numbers.  Real numbers are standard 
decimal numbers which may or may not have a 
fractional part.  They may be expressed as an 
exponential number, like 6.283E15 which means "6.283 
times 10 to the power of 15".  The exponential can be 
negative for a very small number, like 4.712E-13 which 
means "4.712 times 10 to the power of minus 13".  abCalc 
will automatically display very large or very small 
real numbers in exponential format. 

Entering negative real numbers and negative 
exponentials causes a minor problem in the calculator.  
The "-" character normally executes the subtract 
operation.  There are some exceptions though.  If the 
entry box is empty, pressing the "-" character will 
insert a minus character into the entry box.  The 
calculator is assuming you want to enter a negative 
number.  If you actually wanted the subtract 
operation, just press "<enter>" and the calculator 



will perform a subtract.  If you have a positive or 
negative real number in the entry box followed by "E" 
or "e", then the calculator assumes you are entering 
an exponential number.  If you then type "-" or hit 
the "-" button, it will insert a minus character after 
the "E".  This allows you to enter negative exponents.  
If you have a number on the stack which you want to 
make negative, you probably want the CHS (change sign) 
operation. 

Integer numbers start with a "#" character.  But 
before entering an integer, you need to know what 
base you are in and the bit width.  By default, the 
calculator is in decimal mode and expects base 10 
numbers.  You can switch between bases by using the 
BIN (binary), OCT (octal), DEC (decimal) and HEX 
(hexadecimal) operations.  The integer number you 
enter is interpreted using that base so if you are not 
sure, you may want to execute the specific base you 
intend to use. 

After the "#" character comes a series of 0's and 1's 
when entering a binary number.  Or numbers from 0 to 
7 for an octal number.  In decimal mode, you would 
enter digits from 0 to 9.  And in hexadecimal, the 
digits are the numbers from 0 to 9 and letters A 
through F.  The letters can be entered in lower or 
uppercase when entering a hexadecimal number.  An 
integer on the stack has the "#" prefix but also has a 
suffix to tell you the current base.  The suffix is "b" 
for binary, "o" for octal, "d" for decimal and "h" for 
hexadecimal.  This entry and display format is often 



used in HP RPN calculators which abCalc somewhat 
mimics. 

Other than the base, the other thing to be aware of 
with integer numbers is the current word size.  By 
default, the calculator manipulates 32 bit integers.  
That means you can enter an integer from #00000000h 
to $FFFFFFFFh.  But you can use the STWS operation to 
specify a different word size for your integers.  If 
you want to work with 16 bit integers, push the real 
number "16" onto the stack and execute STWS.  You can 
set the word size to any value from 1 to 32.  All 
operations which manipulate integers respect that word 
size.  So, if you rotate the bits in your integer to 
the left, then the high bit according to the current 
word size is rotated into the low bit.  This way, if 
you want to do 8 bit math, 16 bit math or even 5 bit 
math, it is just a matter of setting your word size. 

There are two shortcuts when entering integers.  
Regardless of the current base, you can always enter a 
hex number by prefixing it with a "$" character.  So, 
you can enter the hex number 42 by entering "$42" 
even if you happen to be in decimal mode.  Also, you 
can use C like syntax and enter the hex number as 
"0x42".  Note that C syntax for octal numbers does not 
work.  The octal number 42 in C would be represented 
as "042" but that cannot be distinguished from the 
real number 42 with a leading zero.  So, these 
shortcuts only work for hex numbers. 



Note that you can use the R2B and B2R operations to 
convert real numbers to integers and integer numbers 
to real numbers respectively. 

7. Operations: 

All of these operations can be entered directly into 
the entry box or selected from the operation list on 
the right side of the UI.  The descriptions below are 
grouped into a series of related operations. 

Arithmetic Operations: 

+: The add operation takes two numbers from the stack 
and pushes the sum of those two numbers.  The 
operation works with two real numbers and pushes a 
real number result.  It also works with two integer 
numbers and pushes an integer result.  And you can 
add a real number and an integer number.  When you 
add a real and integer number, the real number is 
converted to an integer in the current word size and 
then those two numbers are added.  The result is an 
integer number. 

-: The subtract operation takes two numbers from the 
stack and pushes the difference of those two numbers. 
To calculate "4 - 2", you would push 4, then 2 and 
then do the subtract. The operation works with two 
real numbers and pushes a real number result.  It also 
works with two integer numbers and pushes an integer 
result.  And you can subtract a real number and an 
integer number.  When you subtract a real and integer 



number, the real number is converted to an integer in 
the current word size and then those two numbers are 
subtracted.  The result is an integer number. 

*: The multiply operation takes two numbers from the 
stack and pushes the product of those two numbers.  To 
calculate "4 x 2", you would push 4, then 2 and then 
do the multiply.  The operation works with two real 
numbers and pushes a real number result.  It also 
works with two integer numbers and pushes an integer 
result.  And you can multiply a real number and an 
integer number.  When you multiply a real and integer 
number, the real number is converted to an integer in 
the current word size and then those two numbers are 
multiplied.  The result is an integer number. 

/: The divide operation takes two numbers from the 
stack and pushes the ratio of those two numbers.  To 
calculate "4 / 2", you would push 4, then 2 and then 
do the divide.  The operation works with two real 
numbers and pushes a real number result.  It also 
works with two integer numbers and pushes an integer 
result.  And you can divide a real number and an 
integer number.  When you divide a real and integer 
number, the real number is converted to an integer in 
the current word size and then those two numbers are 
divided.  The result is an integer number. 

CHS: The CHS operation stands for "CHange Sign".  It 
takes a single real number from the stack and returns 
a real number with the opposite sign.  Effectively it 



multiplies its argument by minus one.  This operation 
does not work with integer numbers. 

INV: The INV operation is short for "INVerse".  It 
takes a single real number from the stack and returns 
a real number which is the reciprocal of that number.  
Effectively it calculates "1 / x" where "x" is the 
number it pulls from the stack.  This operation does 
not work with integer numbers. 

SQ: The SQ operation is short for "SQuare".  It takes a 
single real number from the stack and returns a real 
number which is the square of that number.  
Effectively, it calculates "x * x" where "x" is the 
number it pulls from the stack.  This operation does 
not work with integer numbers. 

SQRT: The SQRT operation is short for "SQuare RooT".  
It takes a single real number from the stack and 
returns a real number which is the square root of 
that number.  Effectively, it calculates “x ^ 0.5" where 
"x" is the number it pulls from the stack.  This 
operation does not work with integer numbers. 

^: The power operation takes two numbers from the 
stack and pushes the result.  To calculate "4 ^ 2", you 
would push 4, then 2 and then do the power operation.  
The operation works with two real numbers and pushes 
a real number result.  This operation does not work 
with integer numbers. 



Stack Operations: 

DROP: This operation just pops the item off the top of 
the stack.  It does not matter if the value is a real 
number or integer number. 

SWAP: This operation pops the two items off the top of 
the stack and pushes them back onto the stack in 
reverse order. 

CLEAR: This operation removes all items from the stack. 

Trigonometry Operations: 

PI: This operation pushes the value of pi onto the 
stack as a real number. 

SIN: This operation takes a real number from the top 
of the stack and calculates the sine of that number as 
an angle in radians and pushes the result back onto 
the stack as a real number.  This operation does not 
work with integer numbers. 

COS: This operation takes a real number from the top 
of the stack and calculates the cosine of that number 
as an angle in radians and pushes the result back 
onto the stack as a real number.  This operation does 
not work with integer numbers. 

TAN: This operation takes a real number from the top 
of the stack and calculates the tangent of that 
number as an angle in radians and pushes the result 



back onto the stack as a real number.  This operation 
does not work with integer numbers. 

ASIN: This operation takes a real number from the top 
of the stack and calculates the inverse sine of that 
number and pushes the result back onto the stack as 
an angle in radians.  This operation does not work 
with integer numbers. 

ACOS: This operation takes a real number from the top 
of the stack and calculates the inverse cosine of that 
number and pushes the result back onto the stack as 
an angle in radians.  This operation does not work 
with integer numbers. 

ATAN: This operation takes a real number from the top 
of the stack and calculates the inverse tangent of 
that number and pushes the result back onto the stack 
as an angle in radians.  This operation does not work 
with integer numbers. 

Exponential Operations: 

LOG: This operation takes a real number from the top 
of the stack and calculates the base ten logarithm of 
that number and pushes the result back onto the stack.  
This operation does not work with integer numbers. 

ALOG: This operation takes a real number from the top 
of the stack and calculates ten to the power of that 
number and pushes the result back onto the stack.  



This operation is the inverse of the LOG operation.  
This operation does not work with integer numbers. 

LN: This operation takes a real number from the top 
of the stack and calculates the base e logarithm of 
that number and pushes that result back onto the 
stack.  This operation does not work with integer 
numbers. 

EXP: This operation takes a real number from the top 
of the stack and calculates e to the power of that 
number and pushes that result back onto the stack.  
This operation is the inverse of the LN operation.  
This operation does not work with integer numbers. 

SINH: This operation takes a real number from the top 
of the stack and calculates the hyperbolic sine of 
that number and pushes that result back onto the 
stack.  This operation does not work with integer 
numbers. 

COSH: This operation takes a real number from the top 
of the stack and calculates the hyperbolic cosine of 
that number and pushes that result back onto the 
stack.  This operation does not work with integer 
numbers. 

TANH: This operation takes a real number from the top 
of the stack and calculates the hyperbolic tangent of 
that number and pushes that result back onto the 
stack.  This operation does not work with integer 
numbers. 



Logical Operations: 

R2B: This operation takes a real number from the 
stack and converts it to an integer given the current 
word size.  The converted number is pushed onto the 
stack. 

B2R: This operation takes a integer number from the 
stack and converts it to a real number.  The converted 
number is pushed onto the stack. 

AND: This operation takes two integer numbers from 
the top of the stack and pushes the logical and of 
those two numbers back onto the stack as an integer 
number.  This operation does not work with real 
numbers. 

OR: This operation takes two integer numbers from the 
top of the stack and pushes the logical or of those 
two numbers back onto the stack as an integer number.  
This operation does not work with real numbers. 

XOR: This operation takes two integer numbers from the 
top of the stack and pushes the logical exclusive or 
of those two numbers back onto the stack as an 
integer number.  This operation does not work with 
real numbers. 

NOT: This operation takes a single integer number from 
the top of the stack and pushes an integer result with 



each bit inverted (0 to 1, 1 to 0).  This operation does 
not work with real numbers. 

SL: This operation takes a single integer number from 
the top of the stack and shifts each bit one position 
to the left, inserting a 0 bit at the low bit position.  
The high bit (as determined by the word size) is lost.  
This operation is basically like multiplying by two.  
This operation does not work with real numbers. 

RL: This operation takes a single integer number from 
the top of the stack and rotates each bit one position 
to the left and pushes the result back onto the stack.  
The high bit (as determined by the word size) becomes 
the bit at the low bit position.  This operation does 
not work with real numbers. 

SR: This operation takes a single integer number from 
the top of the stack and shifts each bit one position 
to the right, inserting a 0 bit at the high bit 
position (as determined by the word size).  The bit at 
the low bit position is lost.  This operation is 
basically like dividing by two.  This operation does 
not work with real numbers. 

RR: This operation takes a single integer number from 
the top of the stack and rotates each bit one position 
to the right and pushes the result back onto the 
stack.  This low bit becomes the bit at the high bit 
position (as determined by the word size).  This 
operation does not work with real numbers. 



ASR: This operation takes a single integer number from 
the top of the stack and shifts each bit one position 
to the right.  However, the high bit (as determined by 
the word size) is preserved so if it was a 1, it 
remains a 1.  This operation is basically like dividing 
by two where the high bit represents a sign bit.  This 
operation does not work with real numbers. 

BIN: This operation takes no values from the stack and 
pushes nothing onto the stack.  It sets the default 
integer base size to binary.  Any integers on the 
stack will be displayed in binary format after 
executing this operation.  When entering an integer, 
the calculator will expect a binary number. 

OCT: This operation takes no values from the stack and 
pushes nothing onto the stack.  It sets the default 
integer base size to octal.  Any integers on the stack 
will be displayed in octal format after executing this 
operation.  When entering an integer, the calculator 
will expect an octal number. 

DEC: This operation takes no values from the stack and 
pushes nothing onto the stack.  It sets the default 
integer base size to decimal.  Any integers on the 
stack will be displayed in decimal format after 
executing this operation.  When entering an integer, 
the calculator will expect a decimal number. 

HEX: This operation takes no values from the stack and 
pushes nothing onto the stack.  It sets the default 
integer base size to hexadecimal.  Any integers on the 



stack will be displayed in hexadecimal format after 
executing this operation.  When entering an integer, 
the calculator will expect a hexadecimal number. 

STWS: This operation takes a single real number from 
the stack and pushes nothing onto the stack.  The real 
number should be between 1 and 32 and have no 
fractional part.  The value becomes the new word size 
used for integers.  So, if you want to do 16 bit 
integer math, you would push 16 onto the stack and 
then execute the STWS operation. 

RCWS: This operation takes no values from the stack 
and pushes a single real number onto the stack.  The 
real number is between 1 and 32 and is the current 
word size used for integers.  Use the STWS operation 
to change the word size. 



apple2048 

This game requires an enhanced Apple //e or better 
because it uses MouseText. 

Use I-J-K-M or the arrow keys to slide all tiles in a 
direction.  Matching tiles are added together to make 
a new tile.  On every move, one more tile is added with 
a random value of either 2 or 4. 

Play ends when all tiles are occupied and no more 
moves are possible.  Try to get the largest tile you 
can! 

Key commands: 

 - Press escape or Q to quit at any time.  Your 
game is saved 
 - Press R to start a new game. 
 - Press S to toggle sound on and off. 
 - Press H to get help. 



a2sudoku 

The goal is to get the numbers from 1 to 9 uniquely 
in each column, row and 3x3 sub-square.  Move the 
cursor with arrow keys, I-J-K-M or mouse.  Press a 
number key to enter a value.  Press a number key 
while holding shift or open apple to toggle a scratch 
value.  Use the scratch values to put in possible 
numbers as you work to solve the puzzle.  Press 0 to 
clear a square.  Play ends when the puzzle is solved 
and all squares have the correct value. 

Options: 
 - Difficulty allows you to select easy, medium or 
hard puzzles. 
 - The “show invalid values” option puts a strike 
through any value you enter which is not valid 
because it is not unique within its column, row or 
sub-square.  This doesn’t necessarily mean the value is 
wrong, just that value uniqueness has been violated. 
 - The “show wrong values” option puts a strike 
through any value you enter which is not the correct 
value in the solution. 

Key commands: 
 - Press escape or Q to quit at any time.  Your 
game is saved to restart later. 
 - Press O to change options. 
 - Press R to restart the current game. 
 - Press N to start a new game. 
 - Press H to get help. 
 - Press U to undo your last move.  



a2bejeweled 

This game requires an enhanced Apple //e or better 
because it uses double lores graphics.  A MockingBoard 
including speech is supported in this game but not 
required. 

Use I-J-K-M, the arrow keys, joystick or mouse to move 
your selection.  Hold either apple key, joystick or 
mouse button and move your selection to swap two 
jewels and match 3 or more jewels.  When you match 
three jewels, they disappear and new jewels will drop 
from the top. 

If you match four jewels or three jewels in two 
directions, then the jewel does not disappear.  It will 
start blinking to mark it as a special gem.  Match it 
again and it explodes taking more jewels with it.  
Match five jewels and a special jewel will appear.  
Swap it with any other jewel and all jewels of that 
colour will disappear. 

When the score bar on the right fills, the board 
reloads and you level up.  Play ends when no more 
matches can be made. 

Key commands: 
 - Press Q or escape to quit at any time.  Your 
game is saved so you can continue later. 
 - Press R to start a new game. 
 - Press O to select options. 
 - Press H to get a hint.  



colourGo 

You must have a colour monitor to play this game (I 
suppose color monitors from the United States will 
work too). 

Your player runs to the right at all times.  Press the 
closed apple key or joystick button one to jump.  Hold 
the key or button down longer to jump higher.  
Release it to jump lower.  Release and press it again 
to double jump. 

Change the colour of your player by pressing any key 
(I suggest the space bar).  The player will toggle 
between green and violet.  Your player must be the 
same colour as any floor you touch!!!  Some floors are 
white and because your player cannot turn white, you 
cannot touch white floors. 

Note that if the player touches a floor from above 
_or_ below, you can jump again.  That means you can 
bounce along below a floor and continually jump 
hitting your head against the floor above you. 

The solid floor is the end of the level. 

Key commands: 
 - Press Q or escape at any time to quit the game.


